

from Microorganism

ATP: D-Hexose 6-phosphotransferase (EC 2.7.1.1)

D-Hexose + ATP --- D-Hexose-6-phosphate + ADP

PREPARATION and SPECIFICATION

Appearance: White amorphous powder, lyophilized

Activity : 150U/mg-solid or more

Contaminants : Phosphoglucose isomerase ≤1.0×10-1%

6-Phosphogluconate dehydrogenase $\leq 1.0 \times 10^{-2}\%$ Glucose-6-phosphate dehydrogenase $\leq 1.0 \times 10^{-2}\%$ Myokinase $\leq 1.0 \times 10^{-2}\%$ Glutathione reductase $\leq 5.0 \times 10^{-1}\%$

PROPERTIES

Stability : Product shipped on dry ice, but long-term storage should be at -20°C.

Molecular weight : 55.1 kDa

Isoelectric point : 5.8

Michaelis constant : 6.1×10-5M (D-Glucose), 9.6×10-5M (ATP)

Inhibitors : Co^{2+} , Fe^{3+} , Hg^{2+} , Ag^+ , SDS

Optimum pH $: 8.0 \sim 9.0$ (Fig.1)Optimum temperature $: 40 \sim 50$ °C(Fig.2)pH stability $: pH 5.0 \sim 9.5 (25$ °C, 20hr)(Fig.3)Thermal stability: below 40°C (pH 7.5,15 min)(Fig.4)

Effect of various : (Table 1)

chemicals

UNIT DEFINITION

One unit causes the formation of one micromole of NADH per minute at pH 8.0 at 30°C

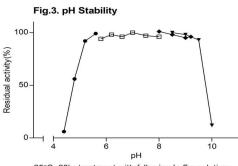
APPLICATIONS

This enzyme is useful for enzymatic determination of glucose, adenosine-5'-triphosphate (ATP) and creatine phosphokinase when coupled with glucose-6-phosphate dehydrogenase.

Manufactured in an ISO 9001 certified facility: Suzhou SignalChem Biotechnologies Corp.

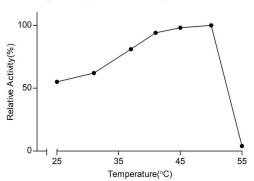
Table 1. Effect of Various Chemicals on Hexokinase

The enzyme solution was dissolved in 50mM K-phosphate buffer, pH 7.5 containing 0.1% of BSA (10U/ml) and incubated with each chemical at 25°C for 1hr.

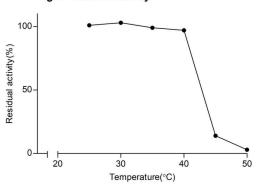

Chemical	Concn.(mM)	Residual activity(%)
None	_	100
CaCl ₂	2	88
MgSO ₄	2	92
ZnSO ₄	2	130
NiCl ₂	2	82
CoCl ₂	2	43
MnCl ₂	2	87
FeCl ₃	2	23
CuSO ₄	2	82
AgNO ₃	2	32
HgSO ₄	2	0
NEM	2	83
BME	2	85

Chemical	Concn.(mM)	Residual activity(%)
IAA	2	84
Hydroxylamine	2	88
EDTA	5	84
NaF	20	85
NaN ₃	20	84
Borate	50	87
Proclin-300	0.045% (v/v)	86
SDS	0.05%	55
Na-Cholate	0.1%	87
Tween-20	0.1% (v/v)	85
Triton X-100	0.1% (v/v)	86
Span-20	0.1% (v/v)	86
Brij-35	0.1%	90

Fig.1. pH Activity


- -- 50mM PIPES-NaOH buffer
- 50mM Tris-HCl buffer
- → 50mM Glycine-NaOH buffer

25°C, 20hr-treatment with following buffer solution:


- 0.1M Acetate buffer
- O.1M K-phosphate buffer
- → 0.1M Tris-HCl buffer
- → 0.1M Glycine-NaOH buffer

in 50mM K-phosphate buffer, pH 7.5

Fig.4. Thermal Stability

15min- treatment with 50mM K-phosphate buffer, pH7.5