Home   >    COVID-19   >   Covid-19 Proteins

2019-nCoV Spike protein RBD (E484Q)

Recombinant viral protein expressed in CHO cells

C19SD-G231CH

10 ug 20 ug 50 ug 100 ug

$ 100


Overview:

The receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein that recognizes the host ACE2 receptor is a major determinant of viral entry and neutralization, and is the most divergent region (1). Mutation at E484 in the RBD region of the spike protein has been detected in the South African (B.1.351), Brazilian (P.1), and NY variants (B.1.526). Lineage B.1.617, also known as the Indian variant carries E484Q mutation in combination with L452R. Viruses harboring mutations in the spike protein have reduced susceptibility to both monoclonal antibodies and convalescent plasma (2). As these new variants displace the first-wave virus, it is pivotal to evaluate their transmissibility, virulence and their possible tendency to escape antibody neutralization (3).


Gene Aliases:

2019-nCoV RBD, SARS-CoV-2 spike RBD, novel coronavirus spike RBD, nCov spike RBD.


Genebank Number:


Formulation:

Recombinant protein stored in 50mM sodium phosphate, pH 7.5, 300mM NaCl, 150mM imidazole.


References:

1. Lan J, et al: Crystal structure of the 2019-nCov spike receptor-binding domain bound with the ACE2 receptor. bioRxiv. doi: https://doi.org/10.1101/2020.02.19.956235. 2. Verghese M, et al: Identification of a SARS-CoV-2 variant with L452R and E484Q neutralization resistance mutations. J Clin Microbiol. 2021, JCM.00741-21. doi: 10.1128/JCM.00741-21 3. Starr TN, et al: Molecular dynamic simulation reveals E484Q mutation enhances spike RBD-ACE2 affinity and the combination of E484Q, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant. Cell. 2020, 182(5):1295-1310.




There are no related publications available for this product.


RESEARCH AREAS

COVID19